Thursday, March 1, 2012

Image: A laser beam is transmitted from La Palma
Max Planck Institute / University of Vienna
A laser beam is transmitted from La Palma (in the horizon) towards the ESA's Optical Ground Station (OGS) in Tenerife (part of the dome is visible on the left) during a quantum communication test.
By InnovationNewsDaily Senior Writer
updated 2/29/2012 8:37:14 PM ET
If secret agent James Bond wanted to tell his MI6 superiors about the location of a stolen superweapon without tipping off villains, he might turn to a global satellite network that transmitted coded keys made unbreakable by the weird laws of physics. Such "quantum key distribution" already exists on Earth beyond the realm of Hollywood spy fantasies, and could soon head for space.
Plans to launch quantum communication satellites have already begun to take shape in Canada, Japan and the European Union. The satellites could securely transmit digital keys through light particles by using physics tricks such as quantum entanglement — the phenomenon that allows two entangled particles to affect one another other even across the distance of a galaxy.



Glenn A. Walsh, Project Director,
Friends of the Zeiss < >
Electronic Mail - < >
  < >
Twitter: < >
Facebook: < >
Blog: < >
Author of History Web Sites on the Internet --
* Buhl Planetarium, Pittsburgh:
  < >
* Adler Planetarium, Chicago:
  < >
* Astronomer, Educator, Optician John A. Brashear:
  < >
* Andrew Carnegie & Carnegie Libraries:
  < >
* Civil War Museum of Andrew Carnegie Free Library:
  < >
* Duquesne Incline cable-car railway, Pittsburgh:
  < >
* Public Transit:
  < >

No comments:

Post a Comment