Tuesday, December 20, 2016

Winter Begins Early Wed.; Ursid Meteors Peak Wed. Night

http://buhlplanetarium.tripod.com/pix/graphics/solsticeimage008.png
This graphic generally shows the location and configuration of the Earth, in relation to the Sun, at
the times of Solstices and Equinoxes during the year.
(Graphic Source: ©1999, Eric G. Canali, former Floor Manager of Pittsburgh's original Buhl Planetarium and Institute of Popular Science and Founder of the South Hills Backyard Astronomers amateur astronomy club; permission granted for only non-profit use with credit to author.)

By Glenn A. Walsh
Reporting for SpaceWatchtower

The season of Winter, in the Northern Hemisphere of Earth, begins at the moment of the December Solstice tomorrow morning (Wednesday, 2016 December 21) at 5:44 a.m. Eastern Standard Time (EST) / 10:44 Coordinated Universal Time (UTC). This moment also marks the astronomical beginning of the Summer season in the Southern Hemisphere.

Tomorrow evening / early Thursday morning will mark the best time to see the annual Ursid Meteor Shower. This meteor shower peaks Thursday, 2016 December 22 at 4:00 a.m. EST / 9:00 UTC.

                                               Winter Solstice 2016

In etymology, the word solstice comes from the Latin terms sol (Sun) and sistere (to stand-still). In ancient times, astronomers / astrologers / priests recognized that one day of the year when the Sun would appear to reach its lowest point in the sky for the entire year. The motion of the Sun's apparent path in the sky (what is known astronomically today as the Sun's declination) would cease on this day, and the Sun would appear to stand-still, before reversing direction.

With our Gregorian Calendar, this usually occurs on, or very close to, December 21. In ancient times, when people used the Julian Calendar, the Winter Solstice was on, or very close to, December 25, what we now know as Christmas Day. Mid-Winter festivals, at the time of the Winter Solstice, were common in ancient times. Instead of competing with these traditions, the early Roman Catholic Church Christianized the Winter festivals by observing the birth of Jesus Christ on December 25 (the actual birth date of Jesus was probably in September).

Today, we know that, while the Sun does have motions, it is actually the motion of the Earth, tilted on its axis 23.44 degrees from the plane of our Solar System while revolving around the Sun, that causes the Earth's seasons. Hence, as the Earth arrives at the point in its orbit around the Sun, where the south polar axis is most directly inclined toward the Sun (thus, the Sun appears at its lowest point for the year in the Northern Hemisphere sky) around December 21, this marks the Winter Solstice in the Northern Hemisphere (and the Summer Solstice in the Southern Hemisphere).

Alternately around June 21, the Summer Solstice marks the beginning of Summer in the Northern Hemisphere (and this date also marks the Winter Solstice, which is the beginning of Winter in the Southern Hemisphere) as the Earth reaches the point in its orbit where the north polar axis is most directly inclined toward the Sun.

The day of the December Solstice is the only time of the year when the Sun reaches the point of Local Solar Noon at the South Pole. Conversely, it is also the only time of the year when Local Solar Midnight occurs at the North Pole. And, of course, it is the reverse during the June Solstice: the only time the Sun reaches the point of Local Solar Noon at the North Pole and the only time when Local Solar Midnight occurs at the South Pole.

Although the Winter months in the Northern Hemisphere are known for the year's coldest weather, the Earth is actually at the point in its orbit closest to the Sun (astronomically known as the point of perihelion) on or very near January 2. The Earth is farthest from the Sun, each year shortly after the Northern Hemisphere's Summer Solstice, on or very near July 5 (the point of aphelion).

Solar radiation, and hence heat from the Sun, to warm an Earth hemisphere depends on the length of daylight and the angle of the Sun above the horizon. The tilt of the planet's axis toward the Sun determines the additional and more direct solar radiation received by a planet's northern or southern hemisphere, and hence, the warmer season of the respective hemisphere.

The Earth's perihelion in January and aphelion in July is due to the elliptical nature of the Earth's orbit around the Sun. Perihelion and aphelion would not occur if the Earth's orbit was a true circle.

Since the Earth is closest to the Sun near the beginning of the Northern Hemisphere's Winter Season, the Earth, then, moves faster in its orbit around the Sun than it moves in July, making the Northern Hemisphere's Winter a shorter season than Summer. Winter will last for only 89 days, while this past-Summer lasted nearly 93 days. This is one of the observed consequences of Johannes Kepler's Laws of Planetary Motion, which he published at the beginning of the 17th century.

The day of the Winter Solstice is known as the “shortest day of the year” and the “longest night of the year” as the Sun shines on the Northern Hemisphere for the shortest length of time for the entire year, on this day. For this reason, Homeless Persons' Memorial Day is commemorated on December 21.

Interestingly, the climate of a locale in the Southern Hemisphere is, on average, slightly milder than a location at the same latitude in the Northern Hemisphere, because the Southern Hemisphere has significantly more ocean water and much less land. Water warms-up and cools-down more slowly than does land. The only exception is the Antarctic, which is colder than the Northern Hemisphere's Arctic region, possibly because most of the Arctic region is covered with water (although, often frozen water on the surface, but liquid water beneath the ice) while Antarctica is mostly a land mass.

                                              Ursid Meteor Shower

Almost 24 hours after the Winter Solstice comes the peak of the annual Ursid Meteor Shower, which actually begins on December 17 and usually lasts about a week ending December 24, 25, or 26. The Ursids seem to comprise a narrow stream of debris originating from Comet Tuttle. Hence, it is difficult to see Ursid meteors outside of a 12-hour window before and after the peak, where possibly 12 meteors per-hour could be seen, under ideal conditions.

The Ursid Meteor Shower is so-named because most meteors appear to radiate from a point near the Star Beta Ursae Minoris (apparent meteor shower radiant) in the Constellation Ursa Minor (better known as the asterism the “Little Dipper”), which is the brightest star in the bowl of the Little Dipper. Some people call these meteors “Ursids,” in an attempt to emphasize that their apparent radiant is Ursa Minor, not Ursa Major (the asterism the “Big Dipper”).

However, you should not, necessarily, be looking only at the Little Dipper when looking for meteors in this shower. Meteors can appear in any part of the sky at any time (although a meteor's tail may tend to point back toward the radiant).

Of course meteor showers, like all celestial observations, are weather-permitting. If there are more than a few clouds in the sky, meteors will be much more difficult to find. Clear skies are not always available in the skies of late Autumn and early Winter. And, it is always best to get away from city lights, for the opportunity to see the smaller, dimmer meteors. As always, the best time to view any meteor shower is between local midnight and local dawn, when the Earth is actually rotating into the stream of meteoric debris.

Binoculars and telescopes are not very useful for finding meteors. Meteors streak across the sky in a very short period of time, far too short to aim binoculars or a telescope. So, the best way to view a meteor shower is to lie on a blanket or beach towel on the ground, or use a reclining a chair, outdoors in an area with a good view of the entire sky (with few obstructions such as buildings, trees, or hills), and keep scanning the entire sky.

So, if you go out to see the Ursid Meteor Shower, start looking for meteors around local midnight, or perhaps a little later. Make sure you have a good site where you can see most of the sky, and that sky is relatively clear. Be sure to dress properly for the early morning temperatures, now that we are at the very beginning of Winter.

And, you want to go out ahead of time, before you actually start looking for meteors, to get your eyes accustomed to the dark sky. Dark-adapting your eyes for meteor-watching could take up to a half-hour.

Special Thanks: Eric G. Canali, former Floor Manager of Pittsburgh's original Buhl Planetarium and Institute of Popular Science and Founder of the South Hills Backyard Astronomers amateur astronomy club.

Internet Links to Additional Information ---

More on the Winter Solstice:
Link 1 >>> http://scienceworld.wolfram.com/astronomy/WinterSolstice.html
Link 2 >>> http://en.wikipedia.org/wiki/Winter

More on a Solstice: Link >>> http://en.wikipedia.org/wiki/Solstice

Popular Winter Planetarium Sky Shows Shown at Pittsburgh's original Buhl Planetarium and Institute of Popular Science (1939 to 1991), including full scripts of each show:
The Star of Bethlehem >>> http://buhlplanetarium3.tripod.com/skyshow/bethlehem/
The Stars of Winter >>> http://buhlplanetarium3.tripod.com/skyshow/winter/

More on calendars ---
       Gregorian Calendar: Link >>> http://en.wikipedia.org/wiki/Gregorian_calendar
       Julian Calendar: Link >>> http://en.wikipedia.org/wiki/Julian_calendar

More on the Ursid Meteor Shower: Link >>> http://en.wikipedia.org/wiki/UrsidsA

More on the Homeless Persons' Memorial Day:
Link >>> http://nationalhomeless.org/about-us/projects/memorial-day/

Source: Glenn A. Walsh Reporting for SpaceWatchtower, a project of Friends of the Zeiss.
             2016 December 20.


                                                               Historic 10-inch Siderostat-type Refractor Telescope at Pittsburgh's original Buhl Planetarium and Institute of Popular Science.
        2016: 75th Year of Pittsburgh's Buhl Planetarium Observatory
     Link >>> http://spacewatchtower.blogspot.com/2016/11/75th-anniversary-americas-5th-public.html

                             Like This Post? - Please Share!

            More Astronomy & Science News - SpaceWatchtower Twitter Feed:
            Link >>> https://twitter.com/spacewatchtower

        Astronomy & Science Links: Link >>> http://buhlplanetarium.tripod.com/#sciencelinks

                Want to receive SpaceWatchtower blog posts in your inbox ?
                Send request to < spacewatchtower@planetarium.cc >.

gaw

Glenn A. Walsh, Project Director, Friends of the Zeiss: < http://buhlplanetarium.tripod.com/fotz/ >
& SpaceWatchtower Editor / Author: < http://buhlplanetarium2.tripod.com/weblog/spacewatchtower/gaw/ >
Electronic Mail - < gawalsh@planetarium.cc >
Astronomy Links: < http://buhlplanetarium.tripod.com/#astrolinks >
Science Links: < http://buhlplanetarium.tripod.com/#sciencelinks >
SpaceWatchtower Twitter News Feed: < https://twitter.com/spacewatchtower >
SpaceWatchtower Blog: < http://spacewatchtower.blogspot.com/ >
LibraryWatchtower Blog: < http://librarywatchtower.blogspot.com >
South Hills Backyard Astronomers Blog: < http://shbastronomers.blogspot.com/ >
Barnestormin Blog: Writing, Essays, Pgh. News, etc.: < http://www.barnestormin.blogspot.com/ >
Author of History Web Sites on the Internet --
* Buhl Planetarium, Pittsburgh:
  < http://www.planetarium.cc >
* Adler Planetarium, Chicago:
  < http://adlerplanetarium.tripod.com >
* Astronomer, Educator, Optician John A. Brashear:
  < http://johnbrashear.tripod.com >
* Andrew Carnegie & Carnegie Libraries:
  < http://www.andrewcarnegie.cc >
* Civil War Museum of Andrew Carnegie Free Library:
  < http://garespypost.tripod.com >
Duquesne Incline cable-car railway, Pittsburgh:
  < http://inclinedplane.tripod.com >
* Public Transit:
  < http://andrewcarnegie2.tripod.com/transit >

No comments:

Post a Comment