Saturday, October 24, 2015

NASA Laser Com-System Miniaturized & Improved Data Precision








This was the Lunar Atmosphere and Dust Environment Explorer (LADEE), a NASA satellite which orbited the Moon in 2013 and 2014. Science payloads ---
LLCD: Lunar Laser Communication Demonstration
NMS: Neutral Mass Spectrometer
UVS: UV-Visible Spectrometer
LDEX: Lunar Dust Experiment
(Image Sources: "LADEE Spacecraft" by NASA - NASA LADEE. Licensed under Public Domain via Commons - https://commons.wikimedia.org/wiki/File:LADEE_Spacecraft.jpg#/media/File:LADEE_Spacecraft.jpg )

By Lori Keesey, NASA

A NASA-developed laser communication (lasercom) system made headlines in 2013 when it demonstrated record-breaking data download and upload speeds to the Moon. Now, a NASA optical physicist says he can match those speeds—plus provide never-before-achieved, highly precise distance and speed measurements—all from the same relatively small package.

Called the Space Optical Communication and Navigation System, the breadboard technology is made up of commercially available components simulating both ground and space terminals. It recently demonstrated in laboratory testing that it could provide micrometer-level distance and speed measurements over a 622 megabits-per-second (Mbps) laser communication link.

"Combined with the large communication bandwidth, high-precision ranging over an optical communication network will bring about significant advances in navigation and communications, to say nothing of science gathering, notably in the area of geodesy," said technology developer Guan Yang, an optical physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (Geodesy is the science of measuring variations in Earth's gravitational field caused by changing land mass.) And because of its diminutive size, "it also will enable use on CubeSats," an increasingly popular spacecraft bus that typically is no larger than a shoebox.

The ground-based test was similar to one carried out in late 2013 aboard another Goddard-developed lasercom experiment hosted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE).
"Combined with the large communication bandwidth, high-precision ranging over an optical communication network will bring about significant advances in navigation and communications, to say nothing of science gathering, notably in the area of geodesy," said technology developer Guan Yang, an optical physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (Geodesy is the science of measuring variations in Earth's gravitational field caused by changing land mass.) And because of its diminutive size, "it also will enable use on CubeSats," an increasingly popular spacecraft bus that typically is no larger than a shoebox.
The ground-based test was similar to one carried out in late 2013 aboard another Goddard-developed lasercom experiment hosted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE).


Read more at: http://phys.org/news/2015-10-nasa-lasercom.html#jCp
"Combined with the large communication bandwidth, high-precision ranging over an optical communication network will bring about significant advances in navigation and communications, to say nothing of science gathering, notably in the area of geodesy," said technology developer Guan Yang, an optical physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (Geodesy is the science of measuring variations in Earth's gravitational field caused by changing land mass.) And because of its diminutive size, "it also will enable use on CubeSats," an increasingly popular spacecraft bus that typically is no larger than a shoebox.
The ground-based test was similar to one carried out in late 2013 aboard another Goddard-developed lasercom experiment hosted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE).


Read more at: http://phys.org/news/2015-10-nasa-lasercom.html#jC
"Combined with the large communication bandwidth, high-precision ranging over an optical communication network will bring about significant advances in navigation and communications, to say nothing of science gathering, notably in the area of geodesy," said technology developer Guan Yang, an optical physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (Geodesy is the science of measuring variations in Earth's gravitational field caused by changing land mass.) And because of its diminutive size, "it also will enable use on CubeSats," an increasingly popular spacecraft bus that typically is no larger than a shoebox.
The ground-based test was similar to one carried out in late 2013 aboard another Goddard-developed lasercom experiment hosted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE).


Read more at: http://phys.org/news/2015-10-nasa-lasercom.html#jCp
"Combined with the large communication bandwidth, high-precision ranging over an optical communication network will bring about significant advances in navigation and communications, to say nothing of science gathering, notably in the area of geodesy," said technology developer Guan Yang, an optical physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (Geodesy is the science of measuring variations in Earth's gravitational field caused by changing land mass.) And because of its diminutive size, "it also will enable use on CubeSats," an increasingly popular spacecraft bus that typically is no larger than a shoebox.
The ground-based test was similar to one carried out in late 2013 aboard another Goddard-developed lasercom experiment hosted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE).


Read more at: http://phys.org/news/2015-10-nasa-lasercom.html#jCp

More - Link >>> http://phys.org/news/2015-10-nasa-lasercom.html

Sources: NASA, Phys.org .

Related Blog Post ---

"Lunar Laser Com-System Sets Data Transmission Record." 2013 Oct. 24.

Link >>> http://spacewatchtower.blogspot.com/2013/10/lunar-laser-com-system-sets-data.html


Want to receive SpaceWatchtower blog posts in your inbox ?
Send request to < spacewatchtower@planetarium.cc >..

gaw

Glenn A. Walsh, Project Director,
Friends of the Zeiss < http://buhlplanetarium.tripod.com/fotz/ >
Electronic Mail - < gawalsh@planetarium.cc >
SpaceWatchtower Blog: < http://spacewatchtower.blogspot.com/ >
Also see: South Hills Backyard Astronomers Blog: < http://shbastronomers.blogspot.com/ >
Barnestormin: Writing, Essays, Pgh. News, & More: < http://www.barnestormin.blogspot.com/ >
About the SpaceWatchtower Editor / Author: < http://buhlplanetarium2.tripod.com/weblog/spacewatchtower/gaw/ >
SPACE & SCIENCE NEWS, ASTRONOMICAL CALENDAR:
http://buhlplanetarium.tripod.com/#news >
Twitter: < https://twitter.com/spacewatchtower >
Facebook: < http://www.facebook.com/pages/SpaceWatchtower/238017839577841?sk=wall >
Author of History Web Sites on the Internet --
* Buhl Planetarium, Pittsburgh:
  < http://www.planetarium.cc >
* Adler Planetarium, Chicago:
  < http://adlerplanetarium.tripod.com >
* Astronomer, Educator, Optician John A. Brashear:
  < http://johnbrashear.tripod.com >
* Andrew Carnegie & Carnegie Libraries:
  < http://www.andrewcarnegie.cc >
* Civil War Museum of Andrew Carnegie Free Library:
  < http://garespypost.tripod.com >
Duquesne Incline cable-car railway, Pittsburgh:
  < http://inclinedplane.tripod.com >
* Public Transit:
  < http://andrewcarnegie2.tripod.com/transit >

No comments:

Post a Comment